bravo chock, dans le détail voilà la solution, heuuuuuuuu préparez les aspirines lol
Supposons qu'un seul moine soit malade. Lors de l'annonce du père supérieur, celui-ci constate forcément qu'aucun autre moine n'est malade, mais comme la maladie frappe bel et bien le monastère, c'est que lui même est malade est c'est le seul. Il devrait donc partir après la première annonce du père supérieur.
S'il y a 2 moines malades, chacun des deux moines malades voit qu'un autre est malade. Mais ils ne savent pas si eux mêmes sont malades. Ils attendent donc la fin de la première annonce. Aucun d'eux ne se leve car il ne savent pas s'ils sont malades. Mais à la fin de la réunion, comme aucun d'eux ne s'est levé, ils savent qu'il y a plus qu'un seul malade, car sinon on serait dans le cas précédent et l'unique malade serait parti à la fin de la première réunion. Ils sont donc bien tous les deux malades et, le lendemain, dès l'annonce du père supérieur ils peuvent se lever et partir car ils savent maintenant qu'ils sont les 2 seuls malades.
Faisons l'hypothèse que s'il y avait N malades, il pourraient partir juste après la Nième annonce du père supérieur car ils sauraient tous qu'ils sont malades.
Supposons qu'il y ai N+1 malades, chacun d'eux en voit N autres, mais ne savent pas s'il y a N malades ou bien N+1 car ils ne savent rien en ce qui les concerne eux-même. Ceux-ci doivent donc attendre la fin de la réunion du Nième jour pour savoir s'il sont malades. S'ils étaient N, ils seraient partis à la fin du Nième jour d'après l'hypothèse. S'ils ne sont pas partis le Nième jour, c'est donc qu'ils sont N+1, et ils peuvent donc partir juste après la (N+1)ième annonce. Comme l'hypothèse est vrai pour N=1, et que nous venons de vérifier la récurrence, l'hypothèse est donc toujours vraie.
En conclusion, telle qu'est posé l'énoncé, les moines malades sont donc 3. Et le fait qu'ils soient 40 au départ n'est la que pour embrouiller les esprits ... ;-) (sujet posé à POLYTECHNIQUE donc du haut vol)
UNE NEW : (+ facile)
En se rendant à un point d'eau dans la savane, un zèbre croisa six girafes. Chaque girafe transportait trois singes sur son dos. Chaque singe avait deux oiseaux sur la queue.
Combien d'animaux se rendaient au point d'eau ?